A post mortem for string theory

So string theory is dead. But why? What went wrong causing its demise? Or more importantly, why did it not succeed?

We don’t remember those theories that did not succeed. Perhaps we remember those that were around for a long time before they were shown to be wrong, like Newton’s corpuscular theory of light or Ptolemy’s epicycles. Some theories that unsuccessfully tried to explain things that we still don’t understand are also still remembered, like the different models for grand unification. But all those different models that people proposed for the electro-weak theory are gone. We only remember the successful one which is now part of the standard model.

Feynman said at some point that he does not like to read the literature on theories that could not explain something successfully, because it may mislead him. However, I think we can learn something generic about how to approach challenges in our fundamental understanding by looking at the the unsuccessful attempts. It is important not to be deceived by the seductive ideas of such failed attempts, but to scrutinize it for its flaws and learn from that.

Previously, I have emphasized the importance of a guiding principle for our endeavors to understand the fundamental aspects of our universe. I believe that one of the reasons why sting theory failed is because it has a flawed guiding principle. It is based on the idea that, instead of particles, the universe is made up of strings. Since strings are extended objects with a certain scale (the Planck scale), they provide a natural cut-off, removing those pesky infinities.

The problem is, when you invent something to replace something else, it begs the question that there is something to be replaced. In other words, did we need particles in the first place? The answer is no. Quantum field theory, which is the formalism in terms of which the successful standard model is formulated does not impose the existence of particles. It merely requires localized interactions.

But what about the justification for extended objects based on getting rid of the infinities? I’ve written about these infinities before and explained that they are to be expected in any realistic formulation of fundamental physics and that some contrivance to get rid of them does not make sense.

So, the demise of a theory based on a flawed guiding principle is not surprising. What we learn from this post mortem is that it is important to be very careful when we impose guiding principles. Although such principles are not scientifically testable, the notions on which we base such principles should be.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.