Transcending the impasse, part IV

Planck’s constant

It all started with the work of Max Planck. He famously introduced the notion that the energy absorbed or emitted during an interaction is proportional to the frequency of the field being absorbed or emitted. The proportionality constant h is today considered as a fundamental constant of nature. In honor of Max Planck is called Planck’s constant.

Max Planck, the father of quantum mechanics

The reason why we need to look at the Planck constant for transcending the impasse in physics is because there seem to be some confusion as to the role that it plays in quantum mechanics. The confusion manifests in two aspects of quantum mechanics.

One of these aspects is related to the transition from quantum to classical physics, which we have considered before. It is assumed that one should recover classical physics from quantum physics by simply taking the limit where Planck constant goes to zero. Although this assumption is reasonable, it depends on where the constant shows up. One may think that the presence of Planck’s constant in expressions should be unambiguous. That turns out not to be the case.

An example is the commutation relation for spin operators. Often one finds that the commutator produces the spin operators multiplied by Planck’s constant. According to this practice the limit where Planck’s constant goes to zero would imply that spin operators must commute in the classical theory, which is obviously not correct. Spin operators are the generators of three-dimensional rotations which still obey the same algebraic structure in classical theories as they do in quantum theories.

So when should there be a factor of Planck’s constant and when not? Perhaps a simple way to see it is that, if one finds that a redefinition of the quantities in an expression can be used to remove Planck’s constant from that expression, then it should not be there in the first place.

Using this approach, one can consider what happens in a Hamiltonian or Lagrangian for a theory. Remember that both of these are divided by Planck’s constant in the unitary evolution operator or path integral, respectively. One also finds that the quantization of the fields in these theories always contains a factor of the square root of Planck constant. If we pull it out of the definition and make it explicit in the expression of the theory, one finds that Planck’s constant cancels for all the free-field terms (kinetic term and mass term) in the theory. The only terms in either the Hamiltonian or the Lagrangian where the Planck constant remains are the interaction terms. This brings us full circle to the reason why Max Planck introduced the constant in the first place. Planck’s constant is specifically associated with interactions.

So if one sets Planck constant to zero in a theory, the result is that it removes all the interactions. It leads to a free-field theory without interactions, which is indistinguishable form a classical theory. Interactions are responsible for the changes in the number of particles and that is where all the quantum effects come from that we observe.

The other confusion about Planck’s constant is related to the uncertain principle. Again, the role that Planck’s constant plays is that it relates two quantities that, on the one hand, is the conjugate variable on phase space with, on the other hand, the Fourier variable. Without this relationship, one recovers the same uncertainty relationships between Fourier variables in classical theories, but not between conjugate variables in phase space. Planck’s relationship transfers the uncertainty relationship between Fourier variables to conjugate variables on phase space. So, the uncertainty relationship is not a fundamental quantum mechanical principle. No, it is the Planck relationship that deserves that honor.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

Transcending the impasse, part II

Classical vs quantum

It is a strange thing. Why the obsession with something that in the end comes down to a rather artificial distinction. Nature is the way it is. There is no dualism in nature. The distinction we make between classical and quantum is just an artifact of the theoretical model we build to understand nature. Or is it?

Well there is a history. It started with Einstein’s skepticism about quantum mechanics. Together with some co-workers, he eventually came up with a very good argument to justify the idea that quantum mechanics must be incomplete. At least, it seemed like a good argument until it was eventually shown to be wrong. It was found that the idea that quantum mechanics is incomplete and needs some extra hidden variables does not agree with experimental observations. The obsession with the distinction between what is classical and what is quantum is a remnant of this debate that originated with Einstein.

Today, we have a very successful formalism, which is simply called quantum mechanics, and can be used to model quantum phenomena. Strictly speaking, there are different versions of the quantum mechanics formalism, but they are all equivalent. The choice of specific formalism is usually based on convenience and personal taste.

Though Einstein’s issues with quantum mechanics may have been resolved, the mystery of what it really means remains. Therefore, many people are trying to probe deeper to find out why quantum mechanics works the way it does. However, despite all the probing, nothing seems to be discovered that disagrees with the quantum mechanics formalism, which is by now almost a hundred years old. The strange concepts, such as entanglement, discord, and contextuality, that have been distilled from quantum physics, turn out to be aspects that are already built into the quantum mechanics formalism. So, in effect all the probing merely comes down to an attempt to understand the implications of the formalism. We do not uncover any new physics.

But now a new understanding is rearing it ugly head. It turns out that the quantum mechanics formalism is not only successful for situation where we are clearly dealing with quantum physics. It is equally successful in situations where the physical phenomena are clearly classical. The consequence is that many of the so-called quintessential quantum properties, are actually properties of the formalism and are for that reason also present in cases where one can apply the formalism to classical scenarios.

I’ll give two examples. The one is the celebrated concept of entanglement. It has been shown now that the non-separability, which signals entanglement, is also present in classical optical fields. The difference is, in classical field it is restricted to local properties and cannot be separated over a distance as in the quantum case. This classical non-separability display many of the features that were traditionally associated with quantum entanglement. Many people now impose a dogmatic restriction on the use of the term entanglement, reserving it for those cases where it is clearly associated with quantum phenomena.

It does not serve the scientific community well to be dogmatic. It reminds us of the dogmatism that prevailed shortly after the advent of quantum mechanics. For a long while, any questioning of this dogma was simply not tolerated. It has led to a stagnation in progress in the understanding of quantum physics. Eventually, through the work of dissidents such as J. S. Bell, this stagnation was overthrown.

The other example is where certain properties of quasi-probability distributions are used as an indication of the quantum nature of a state. For instance, in the case of the Wigner distribution, any presence of negative values in the function is used as such an indication of it quantum nature. Nothing prevents one from using the Wigner distribution for classical fields. One can for instance consider the mode profiles of classical optical beams. Some of these mode profiles produce Wigner distributions that take on negative values at certain points. Obviously, it would be misleading to use this as a indication of a quantum nature. So, to avoid this situation, one needs to impose the dogmatic restriction that one can only used this indication in those cases where the Wigner distribution is computed for quantum state. But then the indication becomes somewhat circular, doesn’t it?

It occurs to me that the fact that we can use the quantum mechanics formalism in classical scenarios provides us with an opportunity to question our understanding of what it truly means to be quantum. What are the fundamental properties of nature that indicates scenarios that can be unambiguously identified as quantum phenomena? Through a process of elimination we may be able to arrive at such unambiguous properties. That may help us to see that the difference between the quantum nature of things and the classical nature of things is perhaps not as big as we thought.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png