Previously, I argued for principles rather than postulates. Usually, principles are added to a field of study only after some progress have been made with the theories in that field. However, sometimes these principles are required ahead of the time to make progress in a field. That may be the case in fundamental physics where such principles can be used as guiding principles. However, in the latter case such principles may be just guess-work. They may turn out to be wrong.

Quantum physics has been around for a long enough time to justify having its own set of principles. There are postulates for quantum mechanics, but as I explained, they are like a set of axioms for the mathematical formalism and therefore don’t qualify as principles. Principles are statements phrased in terms of physical concepts and not in terms of mathematical concepts.

Here, I want to propose such principles. They are a work in progress. Those that I can state are not extremely surprising. They shouldn’t be because quantum physics has been investigated in so many different ways. However, there are some subtleties that need special attention.

The first principle is simply a statement of Planck’s discovery: *fundamental interactions are quantized*. Note that it does not say that “fields” or “particles” are quantized, because we don’t know that. All we do know is what happens at interactions because all our observations involve interactions. Here, the word “quantized” implies that the interacting entities exchange quantized amounts of energy and momentum.

What are these interacting entities? Usually we would refer to them as particles, but that already makes an assumption about their existence. Whenever we make an observation that would suggest that there are particles, we actually see an interaction. So we cannot conclude that we saw a particle, but we can conclude that the interaction is localized. Unless there is some fundamental distance scale that sets a lower limit, the interaction is point-like – it happens at a dimensionless point. The most successful theories treat these entities as fields with point-like interactions. We can therefore add another principle: *fundamental interactions are localized.* However, we can combine it with the previous principle and see it as another side of one and the same principle: *fundamental interactions are quantized and localized*.

The next principle is a statement about the consequences of such interactions. However, it is so important that it needs to be stated as a separate principle. I am still struggling with the exact wording, so I’ll just call it the *superposition principle*. Now, superposition is something that already exists in classical field theory. In that case, the superposition entails the coherent additions of different fields. The generalization that is introduced by quantum physics is the fact that such superpositions can involved multiple entities. In other words, the superposition is the coherent addition of multiple fields. The notion of multiple entities is introduced due to the interactions. It allows a single entity to split up into multiple entities, each of which can carry a full compliment of all the degrees of freedom that can be associated with such an entity. However, due to conservation principles, the interaction sets up constraints on the relationship among the degrees of freedom of the different entities. As a result, the degrees of freedom of these entities are entangled, which manifests as a superposition of multiple entities.

We need another principle to deal with the complexities of fermionic entities, but here I am still very much in the dark. I do not want to refer to the anti-commuting nature of fermionic operators because that is a mathematical statement. Perhaps, it just shows how little we really know about fermions. We have a successful mathematical formulation, but still do not understand the physical implications of this formulation.