The role of mathematics in physics

Recently, the number of preprints that contain theorems with proofs in the arXiv under quantum physics has increased drastically. I’ve also noticed that some journals in this field tend to publish more such papers, even though they are not ostensibly mathematical physics journals. It seems to suggest that theoretical physics needs to look like mathematics in order to be taken seriously.

Theorems with proofs are not science. Physics, which is a science, is about getting agreement between predictions and experimental observations. So, what is the role of mathematics in physics?


For the physicist, mathematics is a tool, often an indispensable tool, but still, just a tool. When Feynman invented his version of quantum field theory in terms of the path integral, he provided a means to compute predictions for the scattering amplitudes in particle physics that can be compared with the results from high energy particle physics experiments. That was the whole point of this formulation. From a mathematical perspective, the path integral formulation was a bit crude to say the least. It presented a significant challenge to come up with a rigorous formulation of the measure theory that would be suitable for the notion of a path integral.

These days, there seems to be much criticism against quantum field theory. The Haag theorem indicates some inconsistencies in the interaction picture. I also saw that Ed Witten is taking issue with the process of quantization that is used in quantum field theory because of some inconsistencies and he tries to solve these problems with some concepts taken from string theory.

I think these criticisms are missing the point. The one thing that you can take from quantum field theory is this: it works! There is a very good agreement between the predictions of the standard model and the results from high energy physics experiments. So, if anybody thinks that quantum field theory needs to be reformulated or replaced by a better formulations then they are missing the point. The physics is only concerned with having some mathematical procedure to compute predictions, regardless of whether that procedure is a bit crude or not. It is just a tool. Mathematicians may then ask themselves: why does it work?

Mathematics is extremely flexible. There are usually more than one way to represent physical reality in terms of mathematical models. Often these different formulations are completely equivalent as far as experimental predictions are concerned. For this reason, one should realize that physical reality is not intrinsically mathematical. Or stated differently, the math is not real (as Hossenfelder would like us to believe). Mathematical models exist in our minds. It is merely the way we represent the physical world so that we can do calculations. If we come up with a crude model that serves the purpose to perform successful calculations, then there are probably several other less crude ways to do the same calculations. However, it is the amusement of the mathematician to ponder such alternatives. As far as the physicist is concerned, such alternatives are of less importance.

Having said that, there is one possible justification for a physicist to be concerned about the more rigorous formulation of mathematical models. That has to do with progress beyond the current understanding. It may be possible that a more rigorous formulation of our current models may point the way forward. However, here the flexibility of mathematics produces such a diverse array of possibilities that this line of argument is probably not going to be of much use.

Consider another example from the history of physics. Newtonian mechanics was developed into a very rigorous format with the aid of Hamiltonian mechanics. And yet, none of that gave any indication of the direction that special and general relativity took us in. The mathematics turned out to be completely different.

So, I don’t think that we should rely on more rigor in our mathematical models to point the way forward in physics. For progress in physics, we need to focus on physics. As always, mathematics will merely be the tool to do it. For that reason, I tend to ignore all these preprints with their theorems and proofs.