Wisdom is the path to knowledge

As a physicist, I cherish the freedom that comes with the endeavor to uncover new knowledge about our physical world. However, it irks me when people include things in physics that do not qualify.

Physics is a science. As a science, it follows the scientific method. What this means is that, while one can use any conceivable method to come up with ideas for explaining the physical world, only those ideas that work survive to become scientific knowledge. How do we know that it works? We go and look! That means we make observations and perform experiments.

That is the scientific method. It has been like that for more than a few centuries. And it is still the way it is today. All this talk about compromising on the basics of the scientific method is annoying. If we start to compromise, then eventually we’ll end up compromising on our understanding of the physical world. The scientific method works the way it works because that is the only way we can know that our ideas work.

Some people want to go further and put restrictions on how one should come up with these ideas or what kind of ideas should be allowed to have any potential to become scientific knowledge even before it has been tested. There is the idea of falsifiability, as proposed by Karl Popper. It may be a useful idea, but sometimes it is difficult to say in advance whether an idea would be falsifiable. So, I don’t think one should be too exclusive. However, sometimes it is quite obvious that an idea can never be tested.

For example, the interior of a black hole cannot be observed in a way that will give us scientific knowledge about what is going on inside a black hole. Nobody that has entered a black hole can come back with the experimental or observational evidence to tell us that the theory works. So, any theory about the inside of a black hole can never constitute scientific knowledge.

Now there is this issue of the interpretations of quantum mechanics. In a broader sense, it is included under the current studies of the foundations of quantum mechanics. A particular problem that is much talked about within this field, is the so-called measurement problem. The question is: are these scientific topics? Will it ever be possible to test interpretations of quantum mechanics experimentally? Will we be able to study the foundations of quantum mechanics experimentally? Some aspects of it perhaps? What about the measurement problem? Are these topics to be included in physics, or is it perhaps better to just include them under philosophy?

Does philosophy ever lead to knowledge? No, probably not. However, it helps one to find the path to knowledge. If philosophy is considered to embody wisdom (it is the love of wisdom after all), then wisdom must be the path to knowledge. Part of this wisdom is also to know which paths do not lead to knowledge.

It then follows that one should probably not even include the studies of foundations of quantum mechanics under philosophy, because it is not about discovering which paths will lead to knowledge. It tries to achieve knowledge itself, even if it does not always follow the scientific method. Well, we argued that such an approach cannot lead to scientific knowledge. I guess a philosophical viewpoint would then tell us that this is not the path to knowledge after all.

Waar kom die maan vandaan?

Galileo Galilei word beskou as die vader van die wetenskap. Voor hom het mense (filosowe) geglo dat hulle die heelal kan verstaan deur bloot daaroor te dink. Ongelukkig werk dit nie so nie want partykeer het die natuur ‘n paar verrassings waarvan ons nie sou geweet het as ons nie gaan kyk het nie. Dis presies wat Galileo gaan doen het. Hy het vir homself ‘n teleskoop gemaak en na Jupiter deur die teleskoop gaan kyk. In die proses het hy toe ontdek dat daar ‘n klompie mane rondom Jupiter wentel. Dit was nou nogal ‘n groot storie, want die klomp filosowe was oortuig daarvan dat die aarde die middelpunt van die heelal is en dat alles om die aarde moet wentel.
Maan
Goed, maar ek wil nie oor Jupiter se mane praat nie. Ek wil praat van ons eie maan, die een wat Wipneus so lief is voor. ­čśë Planete en mane vorm normaalweg saam met die ster (son) uit ‘n groot stofwolk. Maar ons maan is bietjie uniek. Die maan is baie groot relatief tot die planeet waarom dit wentel. Verder is die minerale waarvan die maan gemaak is nogal anders as dit waaruit die aarde gemaak is. Dit lyk nie asof die aarde en die maan saam ontstaan het nie. So waar kom die maan dan vandaan?

Daar was verskeie idees wat wetenskaplikes al ondersoek het, maar die een wat op hierdie stadium die gunsteling is, is dat die maan gevorm het as gevolg van ‘n botsing tussen die aarde en ‘n ander liggaam so groot soos mars. Wetenskaplikes ondersoek hierdie tipe idees deur rekenaar simulasies te doen wat die effek van die materie en van gravitasie in berekening bring. Uit hierdie simulasies kon hulle sien dat as ‘n baie groot liggaam die aarde teen die regte hoek en spoed sou tref daar ‘n groot stofwolk sou ontstaan wat rondom die aarde wentel en wat uiteindelik sou saamsmelt om ‘n maan te vorm wat net soos ons maan lyk en dieselfde wentelbaan het. Hierdie model word nou beskou as die beste verduideliking vir die ontstaan van die maan.

Het ek dit reggekry om enigiemand te oortuig dat dit is hoe die maan tot stand gekom het? Gaan jy dit glo bloot omdat die wetenskap s├¬ dit is so?┬á Destyds het Galileo nie net vir ons beter inligting oor Jupiter verkry en daarmee die appelkar omgestamp nie, maar hy het inderdaad gewys dat dit beter is om self te gaan kyk en daarmee die basiese meganisme van die wetenskaplike metode ge├»llustreer. Wanneer mens ‘n idee kry oor hoe iets in die natuur werk dan moet mens op een of ander manier die idee kan toets deur fisiese waarnemings. Die oorspronklike idee word ‘n “hipotese” genoem. Nadat die idee deur waarnemings bevestig is kan ons van ‘n “teorie” praat, soos byvoorbeeld die Algemene Relatiwiteitsteorie. Deesdae word die term “model” ook gebruik in stede van “teorie”. So word die beste teorie wat ons vandag in fundamentele fisika het en wat tot ‘n besondere mate eksperimenteel bevestig is, die “Standaard Model” in element├¬re deeltjie fisika genoem.

In die geval van die oorsprong van die maan kan ons onderskei tussen die basiese wetenskaplike meganisme waarmee ‘n maan gevorm word wat presies is soos ons maan, aan die een kant, en die hipotese dat hierdie meganisme inderdaad die manier was hoe ons maan gevorm is, aan die ander kant. Die eersgenoemde basiese wetenskapilke meganisme is bloot ‘n toepassing van gravitasie teorie en materiaalkunde wat reeds deur behoorlike wetenskaplike metodiek as geldige teorie├ź bevestig is. Aan die anderkant is die hipotese nog nie bevestig nie, en daar is weinig hoop dat dit ooit bevestig kan word.

Die wetenskaplike metode stel baie ho├ź vereistes aan die waarnemings wat moet dien as bevestiging vir ‘n hipotese. Sien, dit is belangrik dat die hipotese ‘n nie-triviale voorspelling maak, iets wat nie bloot voor die hand liggend is nie. Dan word ‘n eksperiment gedoen of waarnemings gemaak om te kyk of hierdie voorspelling korrek is. Dit is ook belangrik dat die eksperiment of waarneming herhaalbaar moet wees, anders kan dit nie gekontroleer word nie. As die resultate van die eksperiment of waarneming ooreenstem met die voorspelling dan verkry mens meer vertroue in die hipotese. Indien die resultate strydig is met die voorspelling dan word die hipotese as foutief beskou en verwerp.

In die geval van die hipotese oor hoe ons maan gevorm is, is daar maar net basies een deurslaggewende “voorspelling” en dis dat hierdie die meganisme is waarmee ons maan gevorm is. Die enigste manier om hierdie hipotese te kan toets is om te sien dat dit wel is hoe ons maan gevorm het, maar dis ongelukkig ‘n eenmalige historiese gebeurtenis wat plaasgevind het lank voor daar mense was wat dit kon waarneem. Die eksperiment is ook nie herhaalbaar nie want daar is maar een aarde en een maan wat slegs en maal gevorm is. Hierdie hipotese sal dus maar altyd ‘n hipotese bly.

Nie baie lank terug nie het Karl Popper ons daarop gewys dat mens streng gesproke nooit ‘n hipotese volledig kan bevestig nie. Mens kan bloot al die verkeerde hipoteses verwyder deur hulle te falsifieer. Daar bestaan ook hipoteses wat in beginsel nooit gefalsifieer kan word nie. Sulke hipoteses is nie nuttig nie want mens kan nooit weet of hulle waar is of nie. Hipoteses wat uiteindelik as wetenskaplike teorie├ź kan dien moet dus altyd Popper falsifieerbaar wees.

Aangesien ons hipotese oor die maan nie getoets kan word nie is dit dus nie Popper falsifieerbaar nie. Nogtans word hierdie hipotese met respek beheen in die wetenskap w├¬reld. Nou moet ek darem byvoeg dat daar wel ‘n hele aantal indirekte voorspellings is wat gebruik kan word om hierdie hipotese te toets, maar hierdie indirekte voorspellings kan nooit vir ons deurslaggewende bewys lewer van die manier wat die maan gevorm het nie.

Hierdie situasie is nie uniek nie. Daar is verskeie gevalle waar wetenskaplik gerespekteerde teorie├ź nie streng Popper falsifieerbaar is nie. Daar is miskien verskeie indirekte “omstandigheidsgetuienis” ten gunste van die hipotese, maar die deurslaggewende toets kan nie gedoen word nie omdat dit ‘n nie-herhaalbare unieke gebeurtenis was. Voorbeelde hiervan is die oerknal (big bang) en die evolusie teorie. ­čś» Gravitasie kolke bevat soortgelyke nie-falsifieerbare aspekte, maar in hul geval is daar ‘n ander rede.

Ek beplan om weer later meer hieroor te skryf. ­čśë