Einstein, Podolski, Rosen

Demystifying quantum mechanics VI

When one says that one wants to demystify quantum mechanics, then it may create the false impression that there is nothing strange about quantum mechanics. Well, that would be a misleading notion. Quantum mechanics does have a counterintuitive aspect (perhaps even more than one). However, that does not mean that quantum mechanics need to be mysterious. We can still understand this aspect, and accept its counterintuitive aspect as part of nature, even though we don’t experience it in everyday life.

The counterintuitive aspect of quantum mechanics is perhaps best revealed by the phenomenon of quantum entanglement. But before I discuss quantum entanglement, it may be helpful to discuss some of the historical development of this concept. Therefore, I’ll focus on an apparent paradox that Einstein, Podolski and Rosen (EPR) presented.

They proposed a simple experiment to challenge the idea that one cannot measure position and momentum of a particle with arbitrary accuracy, due to the Heisenberg uncertainty. In the experiment, an unstable particle would be allowed to decay into two particles. Then, one would measure the momentum of one of the particles and the position of the other particle. Due to the conservation momentum, one can then relate the momentum of the one particle to that of the other. The idea is now that one should be able to make the respective measurements as accurately as possible so that the combined information would then give one the position and momentum of one particle more accurately than what Heisenberg uncertainty should allow.

Previously, I explained that the Heisenberg uncertainty principle has a perfectly understandable foundation, which has nothing to do with quantum mechanics apart from the de Broglie relationship, which links momentum to the wave number. However, what the EPR trio revealed in their hypothetical experiment is a concept which, at the time, was quite shocking, even for those people that thought they understood quantum mechanics. This concept eventually led to the notion of quantum entanglement. But, I’m getting ahead of myself.

John Bell

The next development came from John Bell, who also did not quite buy into all this quantum mechanics. So, to try and understand what would happen in the EPR experiment, he made a derivation of the statistics that one can expect to observe in such an experiment. The result was an inequality, which shows that, under some apparently innocuous assumptions, the measurement results when combine in a particular way must always give a value smaller than a certain maximum value. These “innocuous” assumptions were: (a) that there is a unique reality, (b) that there are no nonlocal interactions (“spooky action at a distance”) .

It took a while before an actual experiment that tested the EPR paradox could be perform. However, eventually such experiments were performed, notably by Alain Aspect in 1982. He used polarization of light instead of position and momentum, but the same principle applies. And guess what? When he combined the measurement result as proposed for the Bell inequality, he found that it violated the Bell inequality!

So, what does this imply? It means that at least one of the assumption made by Bell must be wrong. Either, the physical universe does not have a unique reality, or there are nonlocal interactions allowed. The problem with the latter is that it would then also contradict special relativity. So, then we have to conclude that there is no unique reality.

It is this lack of a unique reality that lies at the heart of an understand of the concept of quantum entanglement. More about that later.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

Partiteness

Demystifying quantum mechanics IV

Yes I know, it is not a word, at least not yet. We tend to do that in physics sometimes. When one wants to introduce a new concept, one needs to give it a name. Often, that name would be a word that does not exist yet.

What does it mean? The word “partiteness” indicates the property of nature that it can be represented in terms of parties or partites. It is the intrinsic capability of a system to incorporate an arbitrary number of partites. In my previous post, I mentioned partites as a replacement for the notion of particles. The idea of partites is not new. People often consider quantum systems consisting of multiple partites.

What are these partites then? They represent an abstraction of the concept of a particle. Usually the concept is used rather vaguely, since it is not intended to carry more significance than what is necessary to describe the quantum system. I don’t think anybody has ever considered it to be a defining property that nature possesses at the fundamental level. However, I feel that we may need to consider the idea of partiteness more seriously.

Classical optics diffraction pattern

Let’s see if we can make the concept of a partite a little more precise. It is after all the key property that allows nature to transcend its classical nature. It is indeed an abstraction of the concept of a particle, retaining only those aspects of particles that we can confirm experimentally. Essentially, they can carry a full compliment of all the degrees of freedom associated with a certain type of particle. But, unlike particles, they are not dimensionless points traveling on world lines. In that sense, they are not localized. Usually, one can think of a single partite in the same way one would think of a single particle such as a photon, provided one does not think of it as a single point moving around in space. A single photon can have a wave function described by any complex function that satisfies the equations of motion. (See for instance the diffraction pattern in the figure above.) The same is true for a partite. As a result, a single partite behaves in the same way as a classical field. So, we can switch it around and say that a classical field represents just one partite.

The situation becomes more complicated with multiple partites. The wave function for such a system can become rather complex. It allows the possibility for quantum entanglement. We’ll postpone a better discussion of quantum entanglement for another time.

Multiple photons can behave in a coherent fashion so that they all essentially share the same state in terms of the degrees of freedom. All these photons can then be viewed collectively as just one partite. This situation is what a coherent classical optical field would represent. Once again we see that such a classical field behaves as just one partite.

The important difference between a particle and a partite is that the latter is not localized in the way a particle is localized. A partite is delocalized in a way that is described by its wave function. This wave function describes all the properties of the partite in terms of all the degrees of freedom associated with it, including the spatiotemporal degrees of freedom and the internal degrees of freedom such as spin.

The wave function must satisfy all the constraints imposed by the dynamics associated with the type of field. It includes interactions, either with itself (such as gluons in quantum chromodynamics) or with other types of fields (such as photons with charges particles).

All observations involve interactions of the field with whatever device is used for the observation. The notion of particles comes from the fact that these observations tend to be localized. However, on careful consideration, such a localization of an observation only tells us that the interactions are localized and not that the observed field must consist of localized particles. So, we will relax the idea that fields must be consisting of localized particle and only say that, for some reason that we perhaps don’t understand yet, the interaction among fields are localized. That leaves us free to consider the field as consisting of nonlocal partites (thus avoiding all sort of conceptual pitfalls such as the particle-wave duality).

Hopefully I have succeeded to convey the idea that I have in my mind of the concept of a partite. If not, please let me know. I would love to discuss it.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png