Testable proposals for the measurement problem

In a previous post, I made the statement: “Currently, there are no known experimental conditions that can distinguish between different interpretations of quantum mechanics.” Well, that is not exactly true. Perhaps one can argue that no experiment has yet been performed that conclusively ruled out or confirmed any of the interpretations of quantum mechanics. But, the fact is that recently, there has been some experimentally testable proposals. Still, I’m not holding my breath.

Recently, seeing one such proposal, I remembered that I also knew about another testable proposal made by Lajos Diósi and Roger Penrose. The reason I forgot about that is probably because it seems to have some serious problems. At some point, during a conversation I had with Lajos, I told him I have a stupid question to ask him: does quantum collapse travel at the speed of light? His response was: that is not a stupid question. So, then I concluded that it is not something that any of the existing collapse models can handle correctly. In fact, I don’t think any such model will ever be able to handle it in a satisfactory manner.

Thinking back to those discussions and the other bits and pieces I’ve read about the measurement problem, I tend to reconfirm my conviction that the simplest interpretation of quantum mechanics (and therefore the one most likely to be correct) is the so-called Many Worlds interpretation of quantum mechanics. However, the more I think about it, the more I believe that “many worlds” is a misnomer. It is not about many worlds or many universes that are constantly branching off to become disjoint universes.

Perhaps one can instead call it the “multiple reality” interpretation. But how would multiple realities be different from “many worlds”? That fact is that these realities are not disjoint, but form part of the unitary whole of a single universe. These realities can be combined into arbitrary superpositions. What more, these realities are not branching of to produce more realities. The number of realities remains the same for all time. (There are actually an infinite number of them, but the cardinality of the set remains the same.) The interactions merely change the relative complex probability amplitudes of all the realities. 

Anyway, just thought I should clear this up. I don’t see myself ever writing publication on this topic.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

The problem with the measurement problem

It is not really a topic I want to discuss. In fact, I don’t think it is worthy of including under my Demystifying Quantum Mechanics series. However, since even physicists don’t seem to get it, it is necessary to clarify a few things.

So the argument seems to go that even of one were to consider a completely mixed quantum states with equal probabilities for different outcomes then a measure would convert this mixed state into one with only one outcome and zero for all other outcomes. This transformation is then interpreted as a quantum collapse and the fact that this process is not understood is called the measurement problem.

The problem with this interpretation of the situation is just that: it is an interpretation. So it falls under the general topic of interpretations of quantum mechanics. Currently, there are no known experimental conditions that can distinguish between different interpretations of quantum mechanics. As such it is not physics, because it is not science. It falls under philosophy. As a result, it would not be possible to solve the so-called measurement problem.

Just in case you are wondering whether this measurement scenario can be interpreted in any other way that does not involve collapse, the answer is yes. The obvious alternative is the Many World interpretations. In terms of that interpretation the mixed quantum state describes the different probabilities for all the different world in which measurement are to be performed. If one would restrict the quantum state to any one of these worlds (or realities) then it would have 100% probability for a specific outcome even before the measurement is performed. Hence, not collapse and no measurement problem.

So, yes indeed, the measurement problem is a pseudo-problem. It is not one that can (or need to be) solved in physics.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

 

 

Demystifying quantum mechanics I

Feynman’s statement

In one of his books, The Character of Physical Law (MIT Press: Cambridge, Massachusetts, 1995), Richard Feynman stated: “I think I can safely say that nobody understands quantum mechanics.” Apparently, he also said “If you think you understand quantum mechanics, you don’t understand quantum mechanics” in a talk with the same title as the book.

Richard Feynman

So it is quite clear that Feynman strongly believed that quantum mechanics is fundamentally incomprehensible. Who can argue with Feynman? He was a genius. If he said nobody can understand it, then nobody can understand it, right?

Genius or not, Feynman was just a human being. One should not elevate any person to such a level that their statements are considered to be cast in stone.

I don’t think that quantum mechanics is fundamentally incomprehensible. It is just that we don’t like what we learn. The way nature behaves at the fundamental level seems to contradict our intuition because it is so different from what we experience in our daily lives.

To be sure, there are things about the micro world that we simply cannot know. We know that atoms radiate photons, and that the atoms change their states when this happens. But we don’t know the exact mechanism by which such a photon is created.

The amazing thing about quantum mechanics is that it allows us to make reliable calculations without knowing these details. It is a way to encapsulate our ignorance and renders it innocuous, allowing us to use the little that we can know to make useful predictions.

Quantum mechanics is not the only scientific approach that allows one to make useful calculations amidst ignorance. Statistical analysis does the same. It also ignores the ignorance about the details and allows useful calculations exploiting the little that we do know.

What makes quantum mechanics more mysterious is that the part that we can know includes aspects that are strange to say the least. This strangeness has many manifestations, variously referred to as “the wave-particle duality,” “quantum uncertainty,” “quantum tunneling,” “quantum entanglement,” and many others.

A thorough understanding of these various aspects of quantum mechanics removes some of the strangeness. One can often identify the mechanisms with similar mechanisms in non-quantum scenarios without any strangeness.

However, within this understanding there usually remains an aspect that does not have any equivalent aspect in non-quantum scenarios. Distilling out this one aspect that makes things seem weird, one can refer to it as the notion of multiple realities.

People don’t like this idea of multiple realities. So they invented the idea of quantum collapse. However, there is no observable confirmation of quantum collapse. One can even argue that it is in principle impossible to observe quantum collapse, because it would have to be intrinsically involved in the process of observations. So this led to the so-called “measurement problem.”

The very fact the there are people that try to solve the measurement problem shows that they don’t buy into Feynman’s statement. They invest a significant amount of time and effort to understand something that Feynman believed could not be understood.

I don’t think the idea of multiple realities needs more understanding. It is the way it is, even if we don’t like it. I intend to say a bit more about it later.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

Transcending the impasse, part VI

A little bit of meta-physics

Anyone that has read some of my previous posts may know that I’m not a big fan of philosophy. However, I admit that philosophy can sometimes have some benefits. It occurs to me that, if we want to transcend the impasse in fundamental physics, we may need to take one step back; stand outside the realm of science and view our activities a bit more critically.

Yeah well flippiefanus, what do you think all the philosophers of science are doing? OK, maybe I’m not going to be jumping so deeply into the fray. Only a tiny little step, just enough to say something about the meta-physics of those aspects most pertinent to the problem.

So what is most pertinent to the problem? Someone said that we need to go back and make sure that we sort out the mistakes and misconceptions. That idea resonates with me. However, it is inevitable in the diverse nature of humans to do that anyway. The problem is that if somebody finds something that seems incorrect in our current understanding, then it is generally very difficult to convince people that it is something that needs to be corrected.

What I want to propose here is a slightly different approach. We need to get rid of the clutter.

Clutter in our theory space

There is such a large amount of clutter in our way of looking at the physical world. Much of this clutter is a kind of curtain that we use to hide our ignorance behind. I guess it is human to try hiding one’s ignorance and what better way to do that by dumping a lot of befuddling nonsense over it.

Take for instance quantum mechanics. One often hears about quantum weirdness or the statement that nobody can really understand quantum physics. This mystery that anything quantum represents is one such curtain that people draw over their ignorance. I don’t think that it is impossible to understand quantum mechanics. It is just that we don’t like what we learn.

So what I propose is a minimalist approach. The idea is to identify the core of our understand about a phenomenon and put everything else in the proper perspective without cluttering it with nonsense. The idea of minimalism resonates with the idea of Occam’s razor. It states that the simplest explanation is probably the correct one.

To support the idea of minimalism in physics, we can remind ourselves that scientific theories are constructs that we compile in our minds to help us make sense of the physical world. One should be wary of confusing the two. That opens up the possibility that there may always be multiple theoretical constructs that successfully describe the same physical phenomena. Minimalism tells us to look for the simplest one among them. Those that are more complicated may contain unnecessary clutter that will inevitably just confuse us later.

To give a concrete example of this situation, we can think of the current so-called measurement problem. Previous, I explained that one can avoid any issues related to the measurement problem and the enigma of quantum collapse by resorting to the many-worlds interpretation. This choice enforces the principle of minimalism by selecting the simplest interpretation. Thereby, we are getting rid of the unnecessary clutter of quantum collapse.

This example is somewhat beyond science, because the interpretations of quantum mechanics is not (currently?) a scientific topic. However, there are other examples where we can also apply the minimalist principle. Perhaps I’ll write about that some other day.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png

Transcending the impasse, part III

Many-worlds interpretation

In my series on the impasse in physics and how to transcend it, I previously discussed the issue of classical vs quantum physics. Here, I want to talk about the interpretations of quantum mechanics.

There is much activity and debate on these interpretations. Part of it is related to the measurement problem. Is there such a thing as quantum collapse? How does it work?

David Mermin once said in an article in Physics Today that new interpretations are added every year and none has ever been ruled out. If this is true, then it indicates that the interpretations of quantum mechanics is not part of science, and therefore also not part of physics.

I am not going to say one should not work on such interpretations and try to make sense of what is going on, but the scientific method does not seem to help us here. Perhaps people will eventually come up with experiments to determine how nature works. I’ve seen some proposals, but they are usually associated with some new mechanisms, which in my view are unlikely to be correct.

It occurs to me that while we cannot say which of the interpretations are correct, we may just as well just pick one and work with that. So I pick the simplest one and when I want to figure out how things will work out in one of these experiments, then I can just consider how things will work according to this interpretation. If such a prediction turns out to be wrong, it would show that this interpretation (and all those that made the same prediction) is wrong after all.

The simplest interpretation according to me is the many-world interpretation. It is simple because it does not require the weird unexplained notion of quantum collapse. People don’t like it, because it seems to require such a lot of different worlds. For that reason it is also associated with the idea of a multiverse.

Hugh Everett III, the person that invented the many-worlds interpretation

Well no, those ideas are anyway misleading. In quantum mechanics, all interactions are described by unitary evolution. The picture that it represents is that there is a set of states that the universe can take on. One can think of each such state as a different description of the world. Hence “many worlds.” However, the actual state of the universe is a quantum superposition of all the possible worlds. In the superposition each world is associated with a complex probability amplitude. It means that some worlds are more likely than others. During interactions these probability amplitudes change.

That is the whole idea of unitary evolution. All the possibilities are already present right from the start. The only thing that interactions do is to change the probability amplitudes that are associated with the different worlds. During the evolution in time the different worlds in the superposition can experience constructive or destructive interference, which would change their probability amplitudes, making some less or more likely that they were before.

The number of worlds (number of terms in the superposition) stays the same. They don’t increase as a result of interactions. How many such worlds are there? Well, if we look at the properties of the set of such basis states, then it is often assumed to be a countable infinite number. However, it may turn out to be uncountably infinite, having what is called the cardinality of the continuum.

What is more is that these different worlds are not distinct unique worlds. One can redefine the basis set of worlds by forming different superpositions of the worlds in the original set to get a new set in which the worlds now look different.

How does all this relate to what we see? The dynamics of the universe causes the interferences due to the unitary evolution to favor a small set of worlds that look very similar. This coherence in what the world looks like is a result of the constructive interference produced by the dynamics.

So the world that we see at a macroscopic level is not just one of these worlds. It is, in a sense, a conglomeration of all those worlds with large probability amplitudes. However, the differences among all these worlds are so small that we cannot notice it at a macroscopic level.

OK, not everything I said here can be confirmed in a scientific way. I cannot even proof that the many-worlds interpretation is correct. However, by thinking of it in this way, one can at least get some idea of it that makes sense.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png