## Demystifying quantum mechanics V

Perhaps one of the most iconic “mysteries” of quantum mechanics is the particle-wave duality. Basically, it comes down to the fact that the interference effects one can observe implies that quantum entities behave like waves, but at the same time, these entities are observed as discrete lumps, which are interpreted as particles. Previously, I explained that one can relax the idea of localized lumps a bit to allow only the interactions, which are required for observations, to be localized. So instead of particles, we can think of these entities as partites that share all the properties of particles, accept that they are not localized lumps. So, they can behave like waves and thus give rise to all the wave phenomena that are observed. In this way, the mystery of the particle-wave duality is removed.

Now, it is important to understand that, just like particles, partites are discrete entities. The discreteness of these entities is an important aspect that plays a significant role in the phenomena that we observe in quantum physics. Richard Feynman even considered the idea that “all things are made of atoms” to be the single most important bit of scientific knowledge that we have.

How then does it happen that some physicist would claim that quantum mechanics is *not* about discreteness? In her blog post, Hossenfelder goes on to make a number of statements that contradict much of our understanding of fundamental physics. For instance, she would claim that “quantizing a theory does not mean you make it discrete.”

Let’s just clarify. What does it mean to *quantize* a theory? It depends, whether we are talking about quantum mechanics or quantum field theory. In quantum mechanics, the processing of quantizing a theory implies that we replace observable quantities with operators for these quantities. These operators don’t always commute with each other, which then leads to the Heisenberg uncertainty relation. So the discreteness is not immediately apparent. On the other hand, in quantum field theory, the quantization process implies that fields are replaced by field operators. These field operators are expressed in terms of so-called ladder operators: creation and annihilation operators. What a ladder operator does is to change the excitation of a field in discrete lumps. Therefore, discreteness is clearly apparent in quantum field theory.

What Hossenfelder says, is that the Heisenberg uncertainty relationships is the key foundation for quantum mechanics. In one of her comments, she states: “The uncertainty principle is a quantum phenomenon. It is not a property of classical waves. If there’s no hbar in it, it’s not the uncertainty principle. People get confused by the fact that waves obey a property that looks similar to the uncertainty principle, but in this case it’s for the position and *wave-number*, not momentum. That’s not a quantum phenomenon. That’s just a mathematical identity.”

It seems that she forgot about Louise de Broglie’s equation, which relates the wave-number to the momentum. In a previous post, I have explained that the Heisenberg uncertain relationship is an inevitable consequence of the Planck and de Broglie equations, which relate the conjugate variables of the phase space with Fourier variables. It has nothing to do with classical physics. It is founded in the underlying mathematics associated with Fourier analysis. Let’s not allow us to be mislead by people that are more interested in sensationalism than knowledge and understanding.

The discreteness of partites allows the creation of superpositions of arbitrary combinations of such partites. The consequences for such scenarios include quantum interference that is observed in for instance the Hong-Ou-Mandel effect. It can also lead to quantum entanglement, which is an important property used in quantum information systems. The discreteness in quantum physics therefore allows it to go beyond what one can find in classical physics.