Those quirky fermions

All of the matter in the universe is made of fermions. They are for this reason one of the most abundant things in the universe. Fermions have been the topic of investigation for a long time. We have learned much about them. However, what we do know about them is encapsulated in the formalisms with which we deal with them in our theories. Does that mean we understand them?

Let’s think about the way we treat fermions in our theories. Basically, we represent them in terms of creation and annihilation operators, which are used to formulate the interactions in which they take part. These operators are distinguished from those for bosons by the anti-commutation relations that they obey.

To the uninitiated, all this must sound like a bunch of gobbledygook. What are the physical manifestations of all these operators? There are none! These operators are just mathematical entities in the formalism for our theories. Although these theories are quite successful, it does not reveal the physical machinery at work on the inside. Or does it?

Although a creation operator does not by itself represent any physical process, it distinguishes different scenarios with different arrangements of fermions. Starting with a given scenario, I can apply a fermion creation operator to introduce a new scenario which contains one additional fermion. Then I can apply the operator again, provided that I am not trying to add another fermion with the same degrees of freedom, it will produce another new scenario.

Here is the strange thing. If I change the order in which I added the two additional fermions, I get a scenario that is different from the one with the previous order. I can contrast this to the situation with bosons. Provided that I don’t try to add bosons with the same degrees of freedom, the order in which I add them doesn’t matter. What it tells us is that bosons with different degrees of freedom don’t effect each other. (We need to be careful about the concepts of time-like or space-like separations, but for the sake of this argument, we’ll assume all bosons or fermions are space-like separated.)

The fact that the order in which we place fermions in our scenario (even when they are space-like separated) makes a difference tells us something physical about fermions. They must be global entities. The entire universe seems to “know” about the existence of each and every fermion in it.

How can that be possible? I can think of one way: topological defects. This is not a new idea. It pops up quite often in various fields of physics.

Topological defect

Why would a topological defect explain the apparent global nature of fermions? It is because all kinds of topological defects can be identified with the aid of an integral that computes the winding number of the topological defect. This type of integral is evaluated over a (hyper)surface that encloses the topological defect. In other words, the field values far away from the defect are included in the integral and not the field value at the defect. Therefore, knowledge about the defect in encoded in the entire field. It therefore suggest that fermions can behave as global entities if they topological defect. This is just a hypothesis. It needs more careful investigation.

Why not an uncertainty principle?

It may seem strange that there are no fundamental physical principle for quantum physics that is associated with uncertainty among those that I have proposed recently. What would be the reason? Since we refer to it as the Heisenberg uncertainty principle, it should qualify as one of the fundamental principles of quantum physics, right? Well, that is just it. Although it qualifies as being a principle, it is not fundamental.

It may help to consider how these concepts developed. At first, quantum mechanics was introduced as an improvement of classical mechanics. Therefore, quantities like position and momentum played an important role.

A prime example of a system in classical mechanics is the harmonic oscillator. Think of a metal ball hanging from a spring. Being pulled down and let go, the ball will start oscillating, moving periodically up and down. This behavior is classically described in terms of a Hamiltonian that contains the position and momentum of the metal ball.

In the quantum version of this system, the momentum is replaced by the wave vector times the Planck constant. But position and the wave vector are conjugate Fourier variables. That is the origin of the uncertainty. Moreover, it also leads to non-commutation when position and momentum are represented as operators. The sum and difference of these two operators behave as lowering and raising operators for quanta of energy in the system. The one reduces the energy in discrete steps and the other increases it in discrete steps.

It was then found that quantum mechanics can also be used to improve classical field theory. But there are several differences. Oscillations in fields are not represented as displacements in position that is exchange into momentum. Instead, their oscillations manifest in terms of the field strength. So, to develop a quantum theory of fields, one would start with the lowering and raising operators, which are now called creation and annihilation operators or ladder operators. Their sum and difference produce a pair of operators that are analogues to the position and momentum operators for the harmonic oscillator. In this context, these are called quadrature operators. They portray the same qualitative behavior as the momentum and position operators. They represent conjugate Fourier variables and therefore again produce an uncertainty and non-commutation. The full development of quantum field theory is far more involved then what I described here, but I only focused on the origin of the uncertainty in this context here.

So, in summary, uncertainty emerges as an inevitable consequence of the Fourier relationship between conjugate variables. In the case of mechanical systems, these conjugate variables come about because of the quantum relationship between momentum and wave vector. In the case of fields, these conjugate variables comes from the ladder operators, leading to analogues properties as found for the formal description of the harmonic oscillator. Hence, uncertainty is not a fundamental property in quantum physics.

Principles of quantum physics

Previously, I argued for principles rather than postulates. Usually, principles are added to a field of study only after some progress have been made with the theories in that field. However, sometimes these principles are required ahead of the time to make progress in a field. That may be the case in fundamental physics where such principles can be used as guiding principles. However, in the latter case such principles may be just guess-work. They may turn out to be wrong.

Quantum physics has been around for a long enough time to justify having its own set of principles. There are postulates for quantum mechanics, but as I explained, they are like a set of axioms for the mathematical formalism and therefore don’t qualify as principles. Principles are statements phrased in terms of physical concepts and not in terms of mathematical concepts.

Here, I want to propose such principles. They are a work in progress. Those that I can state are not extremely surprising. They shouldn’t be because quantum physics has been investigated in so many different ways. However, there are some subtleties that need special attention.

The first principle is simply a statement of Planck’s discovery: fundamental interactions are quantized. Note that it does not say that “fields” or “particles” are quantized, because we don’t know that. All we do know is what happens at interactions because all our observations involve interactions. Here, the word “quantized” implies that the interacting entities exchange quantized amounts of energy and momentum.

What are these interacting entities? Usually we would refer to them as particles, but that already makes an assumption about their existence. Whenever we make an observation that would suggest that there are particles, we actually see an interaction. So we cannot conclude that we saw a particle, but we can conclude that the interaction is localized. Unless there is some fundamental distance scale that sets a lower limit, the interaction is point-like – it happens at a dimensionless point. The most successful theories treat these entities as fields with point-like interactions. We can therefore add another principle: fundamental interactions are localized. However, we can combine it with the previous principle and see it as another side of one and the same principle: fundamental interactions are quantized and localized.

The next principle is a statement about the consequences of such interactions. However, it is so important that it needs to be stated as a separate principle. I am still struggling with the exact wording, so I’ll just call it the superposition principle. Now, superposition is something that already exists in classical field theory. In that case, the superposition entails the coherent additions of different fields. The generalization that is introduced by quantum physics is the fact that such superpositions can involved multiple entities. In other words, the superposition is the coherent addition of multiple fields. The notion of multiple entities is introduced due to the interactions. It allows a single entity to split up into multiple entities, each of which can carry a full compliment of all the degrees of freedom that can be associated with such an entity. However, due to conservation principles, the interaction sets up constraints on the relationship among the degrees of freedom of the different entities. As a result, the degrees of freedom of these entities are entangled, which manifests as a superposition of multiple entities.

Classical and quantum superpositions

We need another principle to deal with the complexities of fermionic entities, but here I am still very much in the dark. I do not want to refer to the anti-commuting nature of fermionic operators because that is a mathematical statement. Perhaps, it just shows how little we really know about fermions. We have a successful mathematical formulation, but still do not understand the physical implications of this formulation.

Postulates or principles?

Sometimes an idea runs away from us. It may start in a certain direction, perhaps to achieve a certain goal, but then at some point down the line it becomes something else. It may be an undesirable situation, or it may be a new opportunity. Often, only time will tell.

Quantum mechanics is such an idea. It is ostensibly a subfield of physics, but when we take a hard look at quantum mechanics, it looks more and more like mathematics. It has taken on a life of its own, which often seems to have very little to do with physics.

To be sure, physics would not get far without mathematics. However, mathematics has a very specific role to play in physics. We use mathematics to model the physical world. It allows us to calculate what we expect to see when we make observations of the phenomena associated with that model.

Quantum mechanics is different from other physical theories. While other physical theories tend to describe very specific sets of phenomena associated with a specific physical context, quantum mechanics is more general in that is describes a large variety of phenomena in different contexts. For example, all electric and magnetic phenomena provide the context for Maxwell’s theory of electromagnetism. On the other hand, the context of quantum mechanics is any phenomenon that can be found in the micro world. As such quantum mechanics is much more abstract.

We can say that quantum mechanics is not a theory, but instead a formalism in terms of which theories about the micro world can be formulated. It is therefore not strange that quantum mechanics looks more like mathematics. It even has a set of postulates from which the formalism of quantum mechanics can be derived.

But quantum mechanics still needs to be associated with the physical world. Even if it exits as a mathematical formalism, it must make some connection to the physical world. Otherwise, how would we know that it is doing a good job? Comparisons between predictions of theories formulated in terms quantum mechanics and experimental results of the physical phenomena associated with those theories show that quantum mechanics is very successful. However, in the pursuit of understanding the overlap between quantum physics and gravity in fundamental physics, the role of quantum mechanics needs to be understood not as a mere mathematical formalism, but as a fundamental mechanism in the physical world.

It is therefore not sufficient to provide mathematical postulates for the derivation of quantum mechanics as a mathematical formalism. What we need are the physical principles of nature at the fundamental level that leads to quantum mechanics as seen in quantum physics.

Principles differ from postulates. They are not expressed in terms of mathematical concepts, but rather in terms of physical concepts. In other words, instead of talking about non-commuting operators and Hilbert spaces, we would instead be talking about interactions, particle or fields, velocities, trajectories and things like that.

Another important difference is the notion of what is more fundamental than what. In mathematics, the postulates can be combined into sets of axioms from which theorems are derived. It would mean that the postulates are more fundamental. However, they may not be unique in the sense that different sets of axioms could be shown to be equivalent. In physics on the other hand, the principles are considered to be more fundamental than the theories in terms of which physical scenarios are modeled. There may be a cascade of different theories formulated in terms of more fundamental theories. Since, these theories are formulated in terms of mathematics, it can now happen that the axioms for the mathematics in terms of which some of these theories are formulated, are not fundamental from a physics point of view, but a consequence of more fundamental physical aspects.

An example is the non-commutation of operators in quantum mechanics. It is often considered as a fundamental aspect of quantum mechanics. However, it is only fundamental from a purely mathematical point of view. From a physical point of view, the non-commutation follows as a consequence of more fundamental aspects of quantum physics. Ultimately, the fundamental property of nature that leads to this non-commutation is the Planck relationship between energy (or momentum) and frequency (or the propagation vector).

Non-commutation

It is believed that the non-commutation of operators is a characteristic property of quantum mechanics. So much so that axiomatic mathematical structures are developed specifically to represent this non-commuting nature for the purpose of being the ideal formalism in terms of which quantum physics can be modeled.

Is quantum physics the exclusive scenario in which non-commuting operators are found? Is the non-commutative nature of these operators in quantum mechanics a fundamental property of nature?

No, one can also define operators in classical theories and find that they are non-commuting. And, no, this non-commuting property is not fundamental. It is a consequence of more fundamental properties.

Diffraction pattern

To illustrate these statements, I’ll use a well-known classical theory: Fourier optics. It is a linear theory in which the propagation of a beam of light is represented in terms of an angular spectrum of plane waves. The angular spectrum is obtained by computing the two-dimensional Fourier transform of the complex function representing the optical beam profile on some transverse plane.

The general propagation direction of such a beam of light, which is the same thing as the expectation value of its momentum, can be calculated with the aid of the angular spectrum as its first moment. An equivalent first moment of the optical beam profile gives us the expectation value of the beam’s position. Both these calculations can be represented formally as operators. And, these two operators do not commute. Therefore, the non-commutation of operators has nothing to do with quantum mechanics.

So what is going on here? It is an inevitable consequence that two operators associated with quantities which are Fourier conjugate variables would be non-commuting. Therefore, the non-commuting property is an inevitable result of Fourier theory. Quantum mechanics inherits this property because the Planck relationship converts the phase space variables, momentum and position, into Fourier conjugate variables.

So, is Fourier analysis then the fundamental property? Well, no. There is a more fundamental property. The reason why Fourier conjugate variables lead to non-commuting operators is because the bases associated with these conjugate variable are mutually unbiased.

We can again think of Fourier optics to understand this. The basis of the angular spectrum consists of the plane waves. The basis of the beam profile are the points on the transverse plane. Since plane waves have the same amplitude at all points in space, the overlap of a plane wave with any point on the transverse plane gives a result with the same magnitude. Hence, these two bases are mutually unbiased.

Although Fourier theory always leads to such mutually unbiased bases, not all mutually unbiased bases are produced by a Fourier relationship. Another example is found with Lie algebras. For example, consider the Lie algebra associated with three dimensional rotations. This algebra consists of three matrices called the Pauli matrices. We can determine the eigenbases of the three Pauli matrices and we’ll see that they are mutually unbiased. These three matrices do not commute. So, we can make a general statement.

Two operators are maximally non-commuting if and only if their eigenbases are mutually unbiased

The reason for the term “maximally” is to take care of those cases where some degree of non-commutation is seen even when the bases are not completely unbiased.

Although the Pauli matrices are ubiquitous in quantum theory, they are not only found in quantum physics. Since they represent three-dimensional rotations they are also found in purely classical scenarios. Therefore, their non-commutation has nothing to do with quantum physics per se. Of course, as we already showed, the same is true for Fourier analysis.

So, if we are looking for some fundamental principles that would describe quantum physics exclusively, then non-commutation would be a bad choice. The hype about non-commutation in quantum physics is misleading.

This image has an empty alt attribute; its file name is 1C7DB1746CFC72286DF097344AF23BD2.png