One of the quirky things about me is that I don’t believe things I don’t understand. As a result of that, I’ve had a long turbulent relationship with the notion of black holes. See the thing is, for the longest time, I couldn’t understand how an event horizon can form if the time becomes frozen when the infalling matter approaches the point where the event horizon should form.

While I was grappling with this existential aspect of black holes, the rest of the world happily proceeded to invent wormholes, Hawking radiation, singularities, and eventually the information paradox. Together with event horizons, none of these ideas have entered the realm of establish scientific fact, which requires observational confirmation.

Eventually, I read somewhere that the reason an event horizon can form even though the time becomes frozen is because the location for the event horizon with and without this additional matter implies that the matter would past the point where a new event horizon would form in finite time. So, now I understand it and I believe that event horizons can form. But we are not done yet. What about the interior beyond the event horizon? It is still frozen in time. Where does the singularity come from? I still don’t believe that part, perhaps because I still don’t fully understand it.

In all this, the importance of the scientific method should be emphasized. Even if I don’t understand something, I would believe it if it has been observed. While event horizons may be difficult to observe directly, the singularity inside the black hole is completely impossible to observe. For that reason, it can never be part of our scientific understanding.

This year, the Nobel committee announced that the Nobel prize is award for work on black holes. Half of it goes to two people that inferred the existence of a massive black hole at the centre of the milky way galaxy based on the orbits of stars close to the centre. This work is based on scientific observation and therefore satisfies the requirements imposed by the scientific method.

The other half of the Nobel prize is awarded to Sir Roger Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity.” If I understand correctly, the award is based on the Penrose–Hawking singularity theorems. (Hawking did not share the Nobel prize because he passed away.) So what is meant by “a robust prediction” here?

Sir Roger Penrose is a formidable person. During his lifetime, he has produced a remarkable collection of ideas that range over diverse fields. The originality and complexity of these ideas give evidence to Penrose’s uniquely creative intellect. However, these ideas are of a mathematical nature and they show very clearly that Penrose is primarily a mathematician. Many of these ideas have never been confirmed by scientific observations. This lack of scientific confirmation includes the work on singularities in black holes for obvious reasons explained above.

It now brings me to the question, why would the Nobel committee decide to award a prize for “a robust prediction,” instead of something that has been confirmed in a scientific manner? The answer is probably related to the current state of physics. If we look at the work that was awarded recent Nobel prizes in physics, one can see that there must a problem. The problem is that progress in fundamental physics is slowing down or has come to a complete stop. There simply is nothing else to be awarded a physics Nobel prize anymore.